news/2025/8/20 9:15:42/文章来源:https://blog.csdn.net/m0_69057918/article/details/132139286

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ldbm.cn/p/23029.html

如若内容造成侵权/违法违规/事实不符,请联系编程新知网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pytest测试框架之fixture测试夹具详解

fixture的优势 ​ pytest框架的fixture测试夹具就相当于unittest框架的setup、teardown,但相对之下它的功能更加强大和灵活。 命名方式灵活,不限于unittest的setup、teardown可以实现数据共享,多个模块跨文件共享前置后置可以实现多个模块跨…

【第五章 flutter学习之flutter进阶组件-上篇】

文章目录 一、列表组件1.常规列表2.动态列表 二、FridView组件三、Stack层叠组件四、AspectRatio Card CircleAvatar组件五、按钮组件六、Stack组件七、Wrap组件八、StatefulWidget有状态组件总结 一、列表组件 1.常规列表 children: const <Widget>[ListTile(leading: …

linux文本三剑客---grep,sed,awk

目录 grep 什么是grep&#xff1f; grep实例演示 命令参数&#xff1a; 案例演示&#xff1a; sed 概念&#xff1a; 常用选项&#xff1a; 案例演示&#xff1a; awk 概念&#xff1a; awk常用命令选项&#xff1a; awk变量&#xff1a; 内置变量 自定义变量 a…

机器学习实战1-kNN最近邻算法

文章目录 机器学习基础机器学习的关键术语 k-近邻算法&#xff08;KNN&#xff09;准备&#xff1a;使用python导入数据实施kNN分类算法示例&#xff1a;使用kNN改进约会网站的配对效果准备数据&#xff1a;从文本文件中解析数据分析数据准备数据&#xff1a;归一化数值测试算法…

每天一道leetcode: 57.和为s的两个数字

今日份题目&#xff1a; 输入一个递增排序的数组和一个数字s&#xff0c;在数组中查找两个数&#xff0c;使得它们的和正好是s。如果有多对数字的和等于s&#xff0c;则输出任意一对即可。 示例1 输入&#xff1a;nums [2,7,11,15], target 9 输出&#xff1a;[2,7] 或者 …

ffmpeg下载安装教程

ffmpeg官网下载地址https://ffmpeg.org/download.html 这里以windows为例,鼠标悬浮到windows图标上,再点击 Windows builds from gyan.dev 或者直接打开 https://www.gyan.dev/ffmpeg/builds/ 下载根据个人需要下载对应版本 解压下载的文件,并复制bin所在目录 新打开一个命令…

Profibus DP主站转Modbus TCP网关profibus主站模拟软件

捷米JM-DPM-TCP网关。这款产品在Profibus总线侧实现了主站功能&#xff0c;在以太网侧实现了ModbusTcp服务器功能&#xff0c;为我们的工业自动化网络带来了全新的可能。 捷米JM-DPM-TCP网关是如何实现这些功能的呢&#xff1f;首先&#xff0c;让我们来看看它的Profibus总线侧…

Spring Boot集成EasyExcel实现excel导入导出操作

文章目录 Spring Boot集成EasyExcel实现excel导入导出操作0 简要说明简单使用读操作excel源文件实体类监听器业务代码 写操作*实体类*excel示例业务代码根据参数指定列导出指定哪几列导出复杂头导出 关于数值型&#xff0c;日期型&#xff0c;浮点型数据解决方案实体类接收字符…

部署-打包并提交代码到Git服务器

前期准备工作 vue.config.js const { defineConfig } require(vue/cli-service) module.exports defineConfig({// 项目出Bug,点击错误可以跳到对应的位置&#xff0c;实际生成环境是不需要的 默认为trueproductionSourceMap: false,lintOnSave: false,publicPath: process.…

学习总结(TAT)

好久都没交总结了&#xff0c;今天把之前的思路和错误整理了一下&#xff1a; 在服务器和客户端两侧&#xff0c;不可以同时先初始化获取输入流&#xff0c;否则会造成堵塞&#xff0c;同时为这位作者大大打call&#xff1a; (3条消息) 关于Java Socket和创建输入输出流的几点…

【Unity3D】Renderer Feature简介

1 3D 项目迁移到 URP 项目后出现的问题 3D 项目迁移至 URP 项目后&#xff0c;会出现很多渲染问题&#xff0c;如&#xff1a;材质显示异常、GL 渲染不显示、多 Pass 渲染异常、屏幕后处理异常等问题。下面将针对这些问题给出一些简单的解决方案。 URP 官方教程和 API 详见→Un…

【python】 油管外挂字幕下载位srt歌词字幕文本文件

【python】 油管外挂字幕下载位srt文本文件 案例截图 案例代码 # python程序&#xff0c;可以下youtube视频的字幕文件。输入一个视频的url&#xff0c;就会下载它的字幕文件到一个文件夹里。 # Author WeChat:****请私信, # Date:2023-8-2, # Email:ack1024#hotmail.com # 本…

基于机器视觉和倾角传感器的位姿检测系统及验证

悬臂式掘进机位姿检测是综掘工作面自动化的基础和前提。只有获取稳定可靠的掘进机实时位姿&#xff0c;才能够在此基础上进行综掘工作面自动化、智能化改造工作。 为了提高井下综掘工作面的生产效率&#xff0c;西安电子科技大学机电工程学院的研究团队提出一种基于机器视觉和…

Adobe ColdFusion 反序列化漏洞复现(CVE-2023-29300)

0x01 产品简介 Adobe ColdFusion是美国奥多比&#xff08;Adobe&#xff09;公司的一套快速应用程序开发平台。该平台包括集成开发环境和脚本语言。 0x02 漏洞概述 Adobe ColdFusion存在代码问题漏洞&#xff0c;该漏洞源于受到不受信任数据反序列化漏洞的影响&#xff0c;攻击…

IPC之三:使用 System V 消息队列进行进程间通信的实例

IPC 是 Linux 编程中一个重要的概念&#xff0c;IPC 有多种方式&#xff0c;本文主要介绍消息队列(Message Queues)&#xff0c;消息队列可以完成同一台计算机上的进程之间的通信&#xff0c;相比较管道&#xff0c;消息队列要复杂一些&#xff0c;但使用起来更加灵活和方便&am…

opencv基础-33 图像平滑处理-中值滤波cv2.medianBlur()

中值滤波是一种常见的图像处理滤波技术&#xff0c;用于去除图像中的噪声。它的原理是用一个滑动窗口&#xff08;也称为卷积核&#xff09;在图像上移动&#xff0c;对窗口中的像素值进行排序&#xff0c;然后用窗口中像素值的中值来替换中心像素的值。这样&#xff0c;中值滤…

rv1126更新rknpu驱动教学

测试平台&#xff1a;易佰纳rv1126 38板 查看板端版本-------------------------------------------------- 1&#xff1a;查看npu驱动版本 dmesg | grep -i galcore&#xff0c;可以看到版本为6.4.3.5 2&#xff1a;查看rknn-server版本 strings /usr/bin/rknn_server | g…

Vulnhub: ColddWorld: Immersion靶机

kali&#xff1a;192.168.111.111 靶机&#xff1a;192.168.111.183 信息收集 端口扫描 nmap -A -sC -v -sV -T5 -p- --scripthttp-enum 192.168.111.183 查看login的源码发现提示&#xff1a;page和文件/var/carls.txt 漏洞利用 wfuzz探测account.php页面发现文件包含&am…

[保研/考研机试] 猫狗收容所 C++实现

题目描述&#xff1a; 输入&#xff1a; 第一个是n&#xff0c;它代表操作序列的次数。接下来是n行&#xff0c;每行有两个值m和t&#xff0c;分别代表题目中操作的两个元素。 输出&#xff1a; 按顺序输出收养动物的序列&#xff0c;编号之间以空格间隔。 源代码&#xff…

【深度学习注意力机制系列】—— ECSKNet注意力机制(附pytorch实现)

SKNet&#xff08;Selective Kernel Network&#xff09;是一种用于图像分类和目标检测等任务的深度神经网络架构&#xff0c;其核心创新是引入了选择性的多尺度卷积核&#xff08;Selective Kernel&#xff09;以及一种新颖的注意力机制&#xff0c;从而在不增加网络复杂性的情…