分布式事务有哪些解决方案?

news/2024/3/5 6:00:25/文章来源:https://blog.csdn.net/caryxp/article/details/134761394

本文我们来讨论下分布式事务的相关知识点。

分布式事务是分布式系统中非常重要的一部分,最典型的例子是银行转账和扣款,A 和 B 的账户信息在不同的服务器上,A 给 B 转账 100 元,要完成这个操作,需要两个步骤,从 A 的账户上扣款,以及在 B 的账户上增加金额,两个步骤必须全部执行成功;否则如果有一个失败,那么另一个操作也不能执行。

分布式事务的经典应用比如转账扣款,下订单扣库存,新会员送积分等等涉及多个业务共同参与在一个请求中。

那么像这种转账扣款的例子,在业务中如何保证一致性,有哪些解决方案呢?

分布式事务是什么

顾名思义,分布式事务关注的是分布式场景下如何处理事务,是指事务的参与者、支持事务操作的服务器、存储等资源分别位于分布式系统的不同节点之上。

简单来说,分布式事务就是一个业务操作,是由多个细分操作完成的,而这些细分操作又分布在不同的服务器上;事务,就是这些操作要么全部成功执行,要么全部不执行。

数据库事务

数据库事务的特性包括原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durabilily),简称 ACID。

在数据库执行中,多个并发执行的事务如果涉及到同一份数据的读写就容易出现数据不一致的情况,不一致的异常现象有以下几种。

脏读,是指一个事务中访问到了另外一个事务未提交的数据。例如事务 T1 中修改的数据项在尚未提交的情况下被其他事务(T2)读取到,如果 T1 进行回滚操作,则 T2 刚刚读取到的数据实际并不存在。

不可重复读,是指一个事务读取同一条记录 2 次,得到的结果不一致。例如事务 T1 第一次读取数据,接下来 T2 对其中的数据进行了更新或者删除,并且 Commit 成功。这时候 T1 再次读取这些数据,那么会得到 T2 修改后的数据,发现数据已经变更,这样 T1 在一个事务中的两次读取,返回的结果集会不一致。

幻读,是指一个事务读取 2 次,得到的记录条数不一致。例如事务 T1 查询获得一个结果集,T2 插入新的数据,T2 Commit 成功后,T1 再次执行同样的查询,此时得到的结果集记录数不同。

脏读、不可重复读和幻读有以下的包含关系,如果发生了脏读,那么幻读和不可重复读都有可能出现。

不同隔离级别

SQL 标准根据三种不一致的异常现象,将隔离性定义为四个隔离级别(Isolation Level),隔离级别和数据库的性能呈反比,隔离级别越低,数据库性能越高;而隔离级别越高,数据库性能越差,具体如下:


(1)Read uncommitted 读未提交

在该级别下,一个事务对数据修改的过程中,不允许另一个事务对该行数据进行修改,但允许另一个事务对该行数据进行读,不会出现更新丢失,但会出现脏读、不可重复读的情况。

(2)Read committed 读已提交

在该级别下,未提交的写事务不允许其他事务访问该行,不会出现脏读,但是读取数据的事务允许其他事务访问该行数据,因此会出现不可重复读的情况。

(3)Repeatable read 可重复读

在该级别下,在同一个事务内的查询都是和事务开始时刻一致的,保证对同一字段的多次读取结果都相同,除非数据是被本身事务自己所修改,不会出现同一事务读到两次不同数据的情况。因为没有约束其他事务的新增Insert操作,所以 SQL 标准中可重复读级别会出现幻读。

值得一提的是,可重复读是 MySQL InnoDB 引擎的默认隔离级别,但是在 MySQL 额外添加了间隙锁(Gap Lock),可以防止幻读。

(4)Serializable 序列化

该级别要求所有事务都必须串行执行,可以避免各种并发引起的问题,效率也最低。

对不同隔离级别的解释,其实是为了保持数据库事务中的隔离性(Isolation),目标是使并发事务的执行效果与串行一致,隔离级别的提升带来的是并发能力的下降,两者是负相关的关系。

分布式事务产生的原因

分布式事务是伴随着系统拆分出现的,前面我们说过,分布式系统解决了海量数据服务对扩展性的要求,但是增加了架构上的复杂性,在这一点上,分布式事务就是典型的体现。

在实际开发中,分布式事务产生的原因主要来源于存储和服务的拆分。

存储层拆分

存储层拆分,最典型的就是数据库分库分表,一般来说,当单表容量达到千万级,就要考虑数据库拆分,从单一数据库变成多个分库和多个分表。在业务中如果需要进行跨库或者跨表更新,同时要保证数据的一致性,就产生了分布式事务问题。在后面的课程中,也会专门来讲解数据库拆分相关的内容。

服务层拆分

服务层拆分也就是业务的服务化,系统架构的演进是从集中式到分布式,业务功能之间越来越解耦合。

比如电商网站系统,业务初期可能是一个单体工程支撑整套服务,但随着系统规模进一步变大,参考康威定律,大多数公司都会将核心业务抽取出来,以作为独立的服务。商品、订单、库存、账号信息都提供了各自领域的服务,业务逻辑的执行散落在不同的服务器上。

用户如果在某网站上进行一个下单操作,那么会同时依赖订单服务、库存服务、支付扣款服务,这几个操作如果有一个失败,那下单操作也就完不成,这就需要分布式事务来保证了。

       

分布式事务解决方案

分布式事务的解决方案,典型的有两阶段和三阶段提交协议、 TCC 分段提交,和基于消息队列的最终一致性设计。

2PC 两阶段提交

两阶段提交(2PC,Two-phase Commit Protocol)是非常经典的强一致性、中心化的原子提交协议,在各种事务和一致性的解决方案中,都能看到两阶段提交的应用。

3PC 三阶段提交

三阶段提交协议(3PC,Three-phase_commit_protocol)是在 2PC 之上扩展的提交协议,主要是为了解决两阶段提交协议的阻塞问题,从原来的两个阶段扩展为三个阶段,增加了超时机制。

TCC 分段提交

TCC 是一个分布式事务的处理模型,将事务过程拆分为 Try、Confirm、Cancel 三个步骤,在保证强一致性的同时,最大限度提高系统的可伸缩性与可用性。

两阶段、三阶段以及 TCC 协议在后面的课程中我会详细介绍,接下来介绍几种系统设计中常用的一致性解决方案。

基于消息补偿的最终一致性

异步化在分布式系统设计中随处可见,基于消息队列的最终一致性就是一种异步事务机制,在业务中广泛应用。

在具体实现上,基于消息补偿的一致性主要有本地消息表和第三方可靠消息队列等。

下面介绍一下本地消息表,本地消息表的方案最初是由 ebay 的工程师提出,核心思想是将分布式事务拆分成本地事务进行处理,通过消息日志的方式来异步执行。

本地消息表是一种业务耦合的设计,消息生产方需要额外建一个事务消息表,并记录消息发送状态,消息消费方需要处理这个消息,并完成自己的业务逻辑,另外会有一个异步机制来定期扫描未完成的消息,确保最终一致性。

下面我们用下单减库存业务来简单模拟本地消息表的实现过程:

(1)系统收到下单请求,将订单业务数据存入到订单库中,并且同时存储该订单对应的消息数据,比如购买商品的 ID 和数量,消息数据与订单库为同一库,更新订单和存储消息为一个本地事务,要么都成功,要么都失败。

(2)库存服务通过消息中间件收到库存更新消息,调用库存服务进行业务操作,同时返回业务处理结果。

(3)消息生产方,也就是订单服务收到处理结果后,将本地消息表的数据删除或者设置为已完成。

(4)设置异步任务,定时去扫描本地消息表,发现有未完成的任务则重试,保证最终一致性。

以上就是基于本地消息表一致性的主流程,在具体实践中,还有许多分支情况,比如消息发送失败、下游业务方处理失败等,感兴趣的同学可以思考下。

不要求最终一致性的柔性事务

除了上述几种,还有一种不保证最终一致性的柔性事务,也称为尽最大努力通知,这种方式适合可以接受部分不一致的业务场景。

分布式事务有哪些开源组件

分布式事务开源组件应用比较广泛的是蚂蚁金服开源的 Seata,也就是 Fescar,前身是阿里中间件团队发布的 TXC(Taobao Transaction Constructor)和升级后的 GTS(Global Transaction Service)。

Seata 的设计思想是把一个分布式事务拆分成一个包含了若干分支事务(Branch Transaction)的全局事务(Global Transaction)。分支事务本身就是一个满足 ACID 的 本地事务,全局事务的职责是协调其下管辖的分支事务达成一致,要么一起成功提交,要么一起失败回滚。 

在 Seata 中,全局事务对分支事务的协调基于两阶段提交协议,类似数据库中的 XA 规范,XA 规范定义了三个组件来协调分布式事务,分别是 AP 应用程序、TM 事务管理器、RM 资源管理器、CRM 通信资源管理器。关于 XA 规范的详细内容,将会在后面的课时中介绍。

总结

掌握分布式事务是学习分布式系统的必经之路,今天介绍了分布式事务的概念,回顾了数据库事务和不同隔离级别,以及分布式事务产生的原因,最后介绍了分布式事务的几种解决方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ldbm.cn/p/262995.html

如若内容造成侵权/违法违规/事实不符,请联系编程新知网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【WinForm.NET开发】创建 Windows 窗体应用

本文内容 创建项目创建应用程序运行应用程序 本文演示创建一个具有基于 Windows 的用户界面 (UI) 的简单 C# 应用程序。 1、创建项目 首先,创建 C# 应用程序项目。 项目类型随附了所需的全部模板文件,无需添加任何内容。 打开 Visual Studio。在“开…

buuctf [极客大挑战 2019]Havefun1

解题思路: 小习惯 本题先看看源码或者检查一下,可能这是俺的一个小习惯。 源码里面都看到了php的代码 php代码解析: $cat$_GET[cat]; echo $cat; if($catdog){ echo Syc{cat_cat_cat_cat}; } 1.$ca…

服务器数据恢复—V7000存储raid5崩溃导致上层卷无法使用的数据恢复案例

服务器数据恢复环境: 某品牌V7000存储中有一组由几十块硬盘组建的raid5阵列。上层操作系统为windows server,NTFS分区。 服务器故障: 有一块硬盘出现故障离线,热备盘自动上线替换离线硬盘。在热备盘上线同步数据的过程&#xff0c…

Java Web——动态Web开发核心-Servlet

目录 1. 官方文档 2. Servlet概述 3. Servlet基本使用 3.1. 浏览器调用Servlet的流程 3.2. Servlet生命周期 3.3. Get/Post请求的分发处理 4. Servlet继承结构 5. 继承HttpServlet开发Servlet 5.1. HttpServlet介绍 5.2. 使用相关代码测试 5.3. HttpServletRequest …

6-49.自定义的学生类

本题要求定义一个简单的学生类,数据成员仅需要定义学号和姓名,函数成员的原型见给出的代码,请给出函数成员的类外完整实现。 其中m_id和m_name分别表示学生的学号和姓名,类型已经定义好。类内声明了3个成员函数,分别表…

ZooKeeper 如何保证数据一致性?

在分布式场景中,ZooKeeper 的应用非常广泛,比如数据发布和订阅、命名服务、配置中心、注册中心、分布式锁等。 ZooKeeper 提供了一个类似于 Linux 文件系统的数据模型,和基于 Watcher 机制的分布式事件通知,这些特性都依赖 ZooKee…

手机爬虫用Fiddler详细教程

如果你正在进行手机爬虫的工作,那么一款强大而又实用的网络调试工具Fiddler将会是你的好帮手。今天,我将和大家分享一份详细的Fiddler教程,教你如何使用它来轻松捕获和分析手机App的网络请求。让我们一起来探索Fiddler的功能和操作&#xff0…

JDK中lock锁的机制,其底层是一种无锁的架构实现的,公平锁和非公平锁

简述JDK中lock锁的机制,其底层是一种无锁的架构实现的,是否知道其是如何实现的 synchronized与lock lock是一个接口,而synchronized是在JVM层面实现的。synchronized释放锁有两种方式: 获取锁的线程执行完同步代码,…

十大经典系统架构设计面试题

十大经典系统架构设计面试题_架构_程序员石磊_InfoQ写作社区翻译自:https://medium.com/geekculture/top-10-system-design-interview-questions-10f7b5ea123d在我作为微软和Facebhttps://xie.infoq.cn/article/4c0c9328a725a76922f6547ad 任何 SDI 问题的提示 通过…

Linux基础项目开发1:量产工具——输入系统(三)

前言: 前面我们已经实现了显示系统,现在我们来实现输入系统,与显示系统类似,下面让我们一起来对输入系统进行学习搭建吧 目录 一、数据结构抽象 1. 数据本身 2. 设备本身: 3. input_manager.h 二、触摸屏编程 t…

Java(十)(网络编程,UDP,TCP)

目录 网络编程 两种软件架构 网络通信的三要素 IP IPv4的地址分类 特殊IP 端口号 协议 用UDP协议发送数据 用UDP接收数据 TCP接收和发送数据 TCP通信--支持与多个客户端同时通信 网络编程 可以让设备中的程序与网络上其他设备的程序进行数据交互(实现网络通信) 两…

ganache部署智能合约报错VM Exception while processing transaction: invalid opcode

这是因为编译的字节码不正确,ganache和remix编译时需要选择相同的evm version 如下图所示: remix: ganache: 确保两者都选择london或者其他evm,只要确保EVM一致就可以正确编译并部署, 不会再出现VM Exception while processing…

山西电力市场日前价格预测【2023-12-04】

日前价格预测 预测说明: 如上图所示,预测明日(2023-12-04)山西电力市场全天平均日前电价为179.48元/MWh。其中,最高日前电价为362.01元/MWh,预计出现在18:00。最低日前电价为0.00元/MWh,预计出…

rdf-file:SM2加解密

一:SM2简介 SM2是中国密码学算法标准中的一种非对称加密算法(包括公钥和私钥)。SM2主要用于数字签名、密钥交换和加密解密等密码学。 生成秘钥:用于生成一对公钥和私钥。公钥:用于加密数据和验证数字签名。私钥&…

免费WordPress站群插件-批量管理站群的免费软件

WordPress站群插件:让文章管理如丝般顺滑 在众多网站建设工具中,WordPress一直以其简便易用、丰富的插件生态而备受青睐。对于站群管理者而言,如何高效地更新、发布和推送文章是一项不可忽视的任务。本文将专注分享一款WordPress站群插件&am…

解读Java虚拟机垃圾回收器:探究经典算法背后的奥秘

目录 一、GC分类与性能指标 (一)垃圾回收器分类 (二)性能指标 (三)不可能三角 二、不同的垃圾回收器概述 三、Serial回收器:串行回收 四、ParNew回收器:并行回收 五、Parall…

【探索Linux】—— 强大的命令行工具 P.18(进程信号 —— 信号捕捉 | 信号处理 | sigaction() )

阅读导航 引言一、信号捕捉1. 内核实现信号捕捉过程2. sigaction() 函数(1)函数原型(2)参数说明(3)返回值(4)函数使用 二、可重入函数与不可重入函数1. 可重入函数条件2. 不可重入函…

[英语学习][5][Word Power Made Easy]的精读与翻译优化

[序言] 今日完成第18页的阅读, 发现大量的翻译错误以及不准确. 需要分两篇文章进行讲解. [英文学习的目标] 提升自身的英语水平, 对日后编程技能的提升有很大帮助. 希望大家这次能学到东西, 同时加入我的社区讨论与交流英语相关的内容. [原著英文与翻译版对照][第18页] Wh…

软件工程期末复习(选择+填空+判断)

文章目录 软件工程期末复习一、 选择题 软件工程期末复习 一、 选择题 1.“软件危机”的表现不包括:(c) A、软件产品不能按期交付 B、用户对“已完成的”软件产品时常不满意 C、程序员越来越供不应求 D、软件项目难以管理,维护困…

etlbox.3.1.0 for NET 轻量级 ETL数据集成库 Crack

适用于 .NET 的轻量级 ETL(提取、转换、加载)工具箱和数据集成库 高度可定制 厌倦了使用几乎不可能实现复杂需求的用户界面?使用 ETLBox,可以轻松编写适合您独特需求的代码。插入您自己的逻辑或修改现有行为以满足您的特定要求。 …