【图像版权】论文阅读:CRMW 图像隐写术+压缩算法

news/2024/4/22 15:29:27/文章来源:https://blog.csdn.net/wtyuong/article/details/136391388

不可见水印

  • 前言
  • 背景介绍
    • ai大模型水印
    • 生成产物不可见水印
      • CRMW 在保护深度神经网络模型知识产权方面与现有防御机制有何不同?
      • 使用图像隐写术和压缩算法为神经网络模型生成水印数据集有哪些优势?
      • 特征一致性训练如何发挥作用,将水印数据集嵌入到神经网络模型中,以确保图像的不可见性和抗压缩性?


请添加图片描述

🌈你好呀!我是 是Yu欸
🌌 2024每日百字篆刻时光,感谢你的陪伴与支持 ~
🚀 欢迎一起踏上探险之旅,挖掘无限可能,共同成长!

前些天发现了一个人工智能学习网站,内容深入浅出、易于理解。如果对人工智能感兴趣,不妨点击查看。

前言

拜读学长的论文
CRMW,它利用图像隐写术和压缩算法来保护神经网络模型免遭非法复制和重新分发

论文:https://arxiv.org/abs/2103.04980
在这里插入图片描述

背景介绍

ai大模型水印

对于人工智能大模型,如GPT和DALL·E,水印技术可以分为两大类:数据注入式的黑盒水印和生成产物(例如图像)中的不可见水印。这两种方法各自针对不同的安全和版权保护需求。

  1. 数据注入式黑盒水印技术(Data Injection-based Black-box Watermarking):这种技术涉及在训练数据中嵌入特定的标记或模式,使得模型在训练过程中学习到这些标记。这种标记的存在不会影响模型的正常性能,但可以通过特定的查询或输入激活,从而验证模型的身份或所有权。这种技术的关键优势在于其隐蔽性和对模型性能的最小影响,使其成为一种有效的知识产权保护手段。

  2. 生成产物中的不可见水印技术(Invisible Watermarking in Generated Outputs):专注于在AI生成的产品,如图像、文本或音频中嵌入隐蔽的标记。这种水印技术利用人类感知的限制,将水印信息嵌入到生成物中,而不影响其外观或可读性。对于图像来说,这可能涉及在特定频率范围内调整像素值;对于文本,可能涉及使用特定单词或短语的模式。这种方法的目的是确保即使在复制或转发过程中,原始创建者的标记也能够被保留和识别,从而有助于版权保护和追踪非法分发的内容。

这两种水印技术在确保人工智能技术的安全应用和知识产权保护方面发挥着重要作用,旨在平衡创新的自由与创作者权利的保护。

生成产物不可见水印

本文提出了一种新颖的方案 CRMW,它利用图像隐写术和压缩算法来保护神经网络模型免遭非法复制和重新分发。

CRMW 在保护深度神经网络模型知识产权方面与现有防御机制有何不同?

CRMW 在保护深度神经网络模型知识产权方面与现有防御机制的不同之处在于几个关键方面:

  1. 对图像压缩的鲁棒性:CRMW 旨在抵抗图像压缩,使其非常适合存储资源有限的环境,例如工业物联网 (IIoT) 设置 [T2]。 即使在数据被压缩的情况下,这种压缩弹性也能确保水印保持完整,从而增强模型的整体安全性[T3]。

  2. 水印的不可见性和维护:CRMW利用图像隐写术和压缩算法生成水印数据集,该数据集可以嵌入到神经网络模型中,同时保持不可见性[T6]。 这意味着水印的存在不会影响模型的性能或外观,使攻击者难以检测和删除水印。

  3. 基于后门的黑盒模型水印:CRMW 采用基于后门的黑盒模型水印方法,允许通过 API [T3] 进行远程所有权验证。 此方法增强了水印的稳健性,并提供了一层针对知识产权盗窃的保护。

  4. 特征一致性训练:CRMW 利用特征一致性训练将公共水印和压缩水印嵌入到目标深度学习模型中 [T3]。 通过最小化特征空间中正常图像和压缩水印图像之间的距离,CRMW 确保水印有效嵌入到模型中,即使存在压缩也是如此。

总体而言,CRMW 通过解决与图像压缩、不可见性和攻击鲁棒性相关的挑战,提供了一种全面且创新的方法来保护深度神经网络模型的知识产权[T6]。

使用图像隐写术和压缩算法为神经网络模型生成水印数据集有哪些优势?

使用图像隐写术和压缩算法为神经网络模型生成水印数据集具有以下几个优点:

  1. 隐藏和隐形:图像隐写技术使水印触发器能够以人眼无法察觉的方式嵌入图像数据中[T6]。 这确保了水印保持隐藏状态并且不会影响图像的视觉质量,从而保持数据的完整性和真实性。

  2. 鲁棒性:通过结合图像压缩算法,水印数据集可以承受压缩过程引起的失真[T3]。 这种稳健性确保即使数据被压缩,水印也保持完整,从而使其能够适应常见形式的图像处理。

  3. 安全性:隐写术和压缩技术的结合增强了水印数据集的安全性,使未经授权的用户更难以篡改或删除水印[T3]。 这种增加的安全层有助于保护与神经网络模型相关的知识产权。

  4. 兼容性:图像隐写和压缩算法被广泛使用并与各种类型的图像数据兼容,使其成为为神经网络模型生成水印数据集的通用工具[T6]。 这种兼容性确保了水印处理可以有效地应用于不同类型的图像和数据集。

  5. 抵御攻击的能力:在水印生成中使用这些先进技术增强了水印针对攻击和未经授权的访问的整体抵御能力[T3]。 通过以隐蔽且稳健的方式嵌入水印,水印数据集变得更能抵抗删除或更改尝试。

总体而言,利用图像隐写术和压缩算法为神经网络模型生成水印数据集提供了一种安全、稳健、隐形的方法来保护知识产权并确保模型的真实性[T6]。

特征一致性训练如何发挥作用,将水印数据集嵌入到神经网络模型中,以确保图像的不可见性和抗压缩性?

特征一致性训练在将水印数据集嵌入神经网络模型中起着至关重要的作用,通过将水印图像的特征与原始图像的特征对齐来确保不可见性和抗图像压缩性。 以下是特征一致性训练对这些方面的贡献:

  1. 隐形

    • 特征一致性训练旨在最小化特征空间中正常图像和水印图像的特征之间的距离[T3]。 通过这样做,水印的嵌入方式不会显着改变原始图像的特征,确保人眼无法察觉水印。
    • 这种功能对齐有助于保持图像的视觉质量和完整性,使潜在攻击者或可能尝试检测和删除水印的未经授权的用户看不到水印。
  2. 抗图像压缩

    • 通过训练具有特征一致性的神经网络模型,优化水印嵌入过程以承受图像压缩引起的失真[T2]。 即使在压缩后,带水印的图像的特征仍被保留,确保水印保持完整且可识别。
    • 这种对图像压缩的抵抗力对于数据可能经历压缩过程的场景至关重要,因为它确保即使在压缩数据中仍然可以准确地提取和验证水印。
  3. 稳健性

    • 特征一致性训练增强了水印针对攻击以及更改或删除尝试的鲁棒性[T6]。 通过将加水印图像的特征与原始图像的特征对齐,水印变得更能抵抗操纵和篡改。
    • 这种稳健性确保水印数据集保持安全可靠,即使面对旨在损害神经网络模型完整性的潜在威胁或恶意活动。

总体而言,特征一致性训练有助于将水印数据集嵌入到神经网络模型中,从而确保不可见性、抗图像压缩性以及针对攻击的整体鲁棒性[T2]、[T3]。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ldbm.cn/p/364388.html

如若内容造成侵权/违法违规/事实不符,请联系编程新知网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【EI会议征稿通知】2024年图像处理与人工智能国际学术会议(ICIPAI2024)

2024年图像处理与人工智能国际学术会议(ICIPAI2024) 2024 International Conference on Image Processing and Artificial Intelligence(ICIPAI2024) 2024年图像处理与人工智能国际学术会议(ICIPAI2024)将…

Vue-02

开发者工具 安装插件,用于调试 Vue 应用。 https://chrome.zzzmh.cn/index 搜索 Vue ,下载 Vue.js Devtools ,此插件可以帮助更新信息,而不通过控制台更新,更方便调试。 注:安装插件后,记得在插…

OpenCV | 霍夫变换检测直线

上次写的不好,这次重写一个霍夫变化的框架,里面包括灰度转换、滤波 canny边缘检测、霍夫变换等…… 原始图像 import cv2 import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB %matplotlib inline def detect_parking_lines(image_pa…

【python报错】Intel MKL FATAL ERROR: Cannot load mkl/../../../libmkl_rt.so.2.

python报错&#xff1a; Intel MKL FATAL ERROR: Cannot load mkl/../../../libmkl_rt.so.2.在切换旧版numpy版本的时候&#xff0c;出现了这个报错&#xff0c;表现就是将numpy切换到<1.24的版本的时候&#xff0c;只要import numpy就弹出以上报错。 尝试了网上的各种方法…

JVM(4)

垃圾回收问题 垃圾回收算法 通过之前的学习我们可以将死亡对象标记出来了,标记出来后我们就可以进行垃圾回收操作了,在正式学习垃圾处理器之前,我们先来看一下垃圾回收器使用的几种算法. 标记-清除算法 "标记-清除"算法是基础的收集算法.算法分为"标记"…

用堆排序解决topk问题

topk问题 从一群数中取出前k高或者低的数。&#xff08;就好比要做一个像csdn热度榜一样的东西&#xff09; 堆的基础知识&#xff1a;【python】堆排序-CSDN博客 堆排序解决思路 1.先用列表的k个元素构建一个小根堆&#xff0c;小根堆最上面的元素就是最小的元素 2.依次拿…

基于51单片机的智能睡眠呼吸检测系统[proteus仿真]

基于51单片机的智能睡眠呼吸检测系统[proteus仿真] 呼吸检测系统这个题目算是课程设计和毕业设计中常见的题目了&#xff0c;本期是一个基于51单片机的智能睡眠呼吸检测系统[proteus仿真] 需要的源文件和程序的小伙伴可以关注公众号【阿目分享嵌入式】&#xff0c;赞赏任意文…

springboot支持的常用日志框架介绍

日志系统是计算机系统中用于记录和跟踪事件、错误和信息的软件组件。在软件开发和维护过程中&#xff0c;日志系统起着至关重要的作用。它可以帮助开发人员了解软件的运行情况&#xff0c;快速定位和解决问题。本文将从以下几个方面介绍日志系统&#xff1a;日志系统概述、Spri…

加密与安全_探索常用编码算法

文章目录 概述什么是编码编码分类ASCII码 &#xff08;最多只能有128个字符&#xff09;Code&#xff1a; 字符转换成ascii码ASCII码对照表 Unicode &#xff08;用于表示世界上几乎所有的文字和符号&#xff09;URL编码 &#xff08;解决服务器只能识别ASCII字符的问题&#x…

使用Fabric创建的canvas画布背景图片,自适应画布宽高

之前的文章写过vue2使用fabric实现简单画图demo&#xff0c;完成批阅功能&#xff1b;但是功能不完善&#xff0c;对于很大的图片就只能显示一部分出来&#xff0c;不符合我们的需求。这就需要改进&#xff0c;对我们设置的背景图进行自适应。 有问题的canvas画布背景 修改后的…

wordpress外贸独立站

WordPress外贸电商主题 简洁实用的wordpress外贸电商主题&#xff0c;适合做外贸跨境的电商公司官网使用。 https://www.jianzhanpress.com/?p5025 华强北面3C数码WordPress外贸模板 电脑周边、3C数码产品行业的官方网站使用&#xff0c;用WordPress外贸模板快速搭建外贸网…

网络学习:MPLS标签与标签分配协议—LDP

目录 前言&#xff1a; 一、MPLS标签 1、定义&#xff1a; 2、标签结构&#xff1a; 3、标签识别&#xff1a; 二、标签分配协议---LDP&#xff08;Lable Distribution Protocol&#xff09; 1、定义&#xff1a; 2、标签分配协议的种类&#xff1a; 3、LDP消息类型 …

自测-5 Shuffling Machine(python版本)

文章预览&#xff1a; 题目翻译算法python代码oj反馈结果 题目 翻译 shuffle是用于随机化一副扑克牌的过程。由于标准的洗牌技术被认为是薄弱的&#xff0c;并且为了避免员工通过不适当的洗牌与赌徒合作的“内部工作”&#xff0c;许多赌场使用了自动洗牌机。你的任务是模拟一…

Vue.js 深度解析:nextTick 原理与应用

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

商业运作之流量之谜,粉丝增长100%

从业13年工作需要才写了这个博客&#xff0c;13年累计粉丝15个&#xff0c;哈哈我是不是太佛系了&#xff1f; 如今走上了创业之路偶尔也会遇到一些技术难题&#xff0c;我都会把解决问题的思路和方法同步到博客&#xff0c;没想到短短半年粉丝从15增长到了30。之前我并没有认…

leetcode 长度最小的子数组

在本题中&#xff0c;我们可以知道&#xff0c;是要求数组中组成和为target的最小子数组的长度。所以&#xff0c;我们肯定可以想到用两层for循环进行遍历&#xff0c;然后枚举所有的结果进行挑选&#xff0c;但这样时间复杂度过高。 我们可以采用滑动窗口&#xff0c;其实就是…

javascript学习快速入门

JavaScript 基本语法 快速入门 数据类型 123 // 整数123 123.1 //浮点数123.1 1.123e3 //科学计数法-99//复数 NaN// not a numberInfinity //表示无限大注意点 NaNNaN&#xff0c;这个与所有的数值都不相等&#xff0c;包括自 己 只能通过isNaN(NaN)来判断这个数是否是Na…

Kali Linux 2024.1

Kali Linux 2024.1刚刚发布&#xff0c;标志着这个备受欢迎的安全重点Linux发行版在今年的首次重大更新。以其先进的渗透测试和安全审计功能而闻名&#xff0c;它是安全专业人员和爱好者的首选工具。 Kali 2024.1 亮点 本次发布由 Linux 内核 6.6 提供支持&#xff0c;突出了…

迷不迷糊?前后端、三层架构和MVC傻傻分不清

现在的项目都讲究前后端分离&#xff0c;那到底什么是前后端&#xff0c;前后端和以前的MVC以及三层架构啥关系呢&#xff1f;今天就这个问题展开一下&#xff0c;方面后面的学习&#xff0c;因为前面讲的jsp、servlet和javabean根据实例&#xff0c;基本上有一个框架的理解了&…

带使能控制的锂电池充放电解决方案

一、产品概述 TP4594R 是一款集成线性充电管理、同步升压转换、电池电量指示和多种保护功能的单芯片电源管理 SOC&#xff0c;为锂电池的充放电提供完整的单芯片电源解决方案。 TP4594R 内部集成了线性充电管理模块、同步升压放电管理模块、电量检测与 LED 指示模块、保护模块…