6. 深度学习中的正则化技术:防止过拟合

news/2024/10/4 19:54:16/文章来源:https://blog.csdn.net/Network_Engineer/article/details/141530062
引言

过拟合是深度学习模型在训练过程中常遇到的挑战。过拟合会导致模型在训练数据上表现良好,但在新数据上表现不佳。为了防止过拟合,研究者们提出了多种正则化技术,如L1/L2正则化、Dropout、数据增强等。这些技术通过约束模型的复杂度或增加数据的多样性,有效提高了模型的泛化能力。本篇博文将深入探讨这些正则化技术的原理、应用及其在实际深度学习任务中的效果。

1. 过拟合的原因与影响

过拟合通常发生在模型的复杂度(如网络层数、参数数量)远大于数据集的多样性时。模型在训练过程中学到了数据中的噪声或无意义的特征,导致其在训练数据上表现优异,但在测试数据上表现较差。

  • 原因

    • 模型过于复杂:深度学习模型拥有大量参数,容易拟合训练数据中的噪声和异常点。
    • 数据不足:当数据集较小时,模型容易记住训练数据的细节,而不是学习到一般化的模式。
    • 训练时间过长:过长的训练时间可能导致模型过度拟合训练数据,损害泛化性能。
  • 影响

    • 泛化性能下降:过拟合导致模型在新数据上的预测能力大幅下降,难以推广到实际应用中。
    • 过度依赖训练数据:过拟合模型无法处理与训练数据分布差异较大的新数据,表现出脆弱性。
2. 正则化方法:L1、L2正则化

正则化是一种通过在损失函数中加入额外约束,防止模型参数过大,从而提升泛化能力的技术。L1和L2正则化是最常见的两种方法。

  • L1正则化:L1正则化通过在损失函数中加入参数的绝对值之和,促使部分参数趋向于零,从而实现特征选择和稀疏化。

    • L1正则化公式

    $$
    J(\theta) = J(\theta) + \lambda \sum_{i=1}^n |\

theta_i|
$$

其中, J ( θ ) J(\theta) J(θ)表示损失函数, λ \lambda λ是正则化强度的超参数, ∣ θ i ∣ |\theta_i| θi是参数的绝对值。

  • 优点:能够自动进行特征选择,使模型更具解释性。

  • 缺点:在高维数据中,L1正则化可能会舍弃一些重要特征,导致模型性能下降。

  • L2正则化:L2正则化通过在损失函数中加入参数的平方和,防止模型参数变得过大,从而减小模型的复杂度。

    • L2正则化公式

    J ( θ ) = J ( θ ) + λ ∑ i = 1 n θ i 2 J(\theta) = J(\theta) + \lambda \sum_{i=1}^n \theta_i^2 J(θ)=J(θ)+λi=1nθi2

    其中, θ i 2 \theta_i^2 θi2是参数的平方。

    • 优点:有效防止模型参数过大,提升泛化能力。
    • 缺点:L2正则化会对所有特征施加约束,可能影响模型对少数重要特征的利用。
3. Dropout的原理与应用

Dropout是一种通过随机丢弃神经网络中的部分神经元,来防止过拟合的技术。Dropout的核心思想是每次训练时随机选择一部分神经元,并将其临时移除,这样模型不会过于依赖某些特定的神经元,从而增强了模型的鲁棒性。

  • Dropout的工作原理

    • 训练阶段:在每个训练迭代中,随机选择一部分神经元,将其输出设为零,从而不参与后续计算。这种随机丢弃迫使模型学习更为冗余的表示,提高了模型的泛化能力。
    • 测试阶段:在测试时,所有神经元都参与计算,但输出需要乘以一个与Dropout概率对应的缩放因子,以保持输出的一致性。
  • Dropout的应用:Dropout被广泛应用于深度神经网络的训练中,尤其是在处理大规模数据集或复杂模型时,Dropout能够显著减少过拟合现象,提升模型的泛化性能。

Dropout应用示例:

在深度卷积神经网络(CNN)中,可以在全连接层后加入Dropout层,以防止模型在高维空间中发生过拟合。

4. 数据增强与早停(Early Stopping)策略

数据增强和早停策略是两种常用的防止过拟合的技术,通过增加训练数据的多样性或控制训练时间,来提升模型的泛化能力。

  • 数据增强:数据增强通过对训练数据进行各种变换(如旋转、缩放、剪切、翻转等),来生成更多样化的训练样本,从而减少模型对原始数据分布的依赖,提升泛化能力。

    • 图像数据增强:常见的图像数据增强技术包括随机裁剪、水平翻转、颜色抖动等。
    • 文本数据增强:在自然语言处理中,数据增强技术可以通过同义词替换、数据清洗等方法生成新的文本样本。

    数据增强不仅可以提高模型的鲁棒性,还能够显著减少过拟合现象,特别是在数据量有限的情况下。

  • 早停(Early Stopping):早停策略通过监控模型在验证集上的性能,当发现模型的性能不再提升甚至开始下降时,提前停止训练,从而防止过拟合。

    • 工作原理:早停策略通常在每个训练轮次结束后评估模型在验证集上的性能,如果在多个连续的轮次中验证性能没有提升或开始下降,则停止训练,并返回最优模型参数。

    • 优点:早停能够有效防止训练时间过长导致的过拟合,且无需调整模型结构。

    • 缺点:早停策略依赖于验证集,如果验证集不能很好地代表测试集分布,可能会提前终止训练,影响模型性能。

早停应用示例:

在训练卷积神经网络时,可以设定一个验证集损失的容忍范围,如果验证集损失在连续10轮内没有显著下降,则停止训练,保存最佳模型。

总结

过拟合是深度学习模型中常见的挑战,但通过合理应用正则化技术,可以有效提升模型的泛化能力。L1/L2正则化、Dropout、数据增强和早停策略都是防止过拟合的重要工具,它们通过不同的方式约束模型的复杂度或增强数据的多样性,帮助模型更好地推广到新数据。在实际应用中,根据具体任务和数据集选择合适的正则化方法,是构建鲁棒深度学习模型的关键。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ldbm.cn/p/439448.html

如若内容造成侵权/违法违规/事实不符,请联系编程新知网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

本地服务器使用Docker搭建Nacos动态服务管理平台并实现远程访问

文章目录 前言1. Docker 运行Nacos2. 本地访问Nacos3. Linux安装Cpolar4. 配置Nacos UI界面公网地址5. 远程访问 Nacos UI界面6. 固定Nacos UI界面公网地址7. 固定地址访问Nacos 前言 本文主要介绍如何本地部署动态服务发现、配置管理和服务管理平台 Nacos ,并结合…

MMO地图传送

本篇由以下四个点讲解: 创建传送点 传送点配置 编辑器扩展:传送点数据生成 传送协议与实现 创建传送点 建碰撞器触发 //位置归零 建一个传送门cube放到要传送的位置(这个teleporter1是传出的区域 这是从另一张地图传入时的传送门 创建一…

【Linux】读者写者问题与读写锁

终此一生,只有两种办法: 要么梦见生活,要么落实生活。 --- 勒内・夏尔 --- 读写锁和自旋锁 1 读者写者问题2 读写锁3 读写锁的两大特性 1 读者写者问题 读者写者是一种生产消费模型,所以就满足"321"原则&#xff1a…

Embedding模型提升效果的方法之二:SimCSE

0. 前言 SimCSE是通过对比学习的方式缓解预训练模型的各向异性问题,各向异性的产生原因在上一篇文章中已有介绍。SimCSE是2021年出的,后面出的 embedding 模型几乎都使用了对比学习来缓解预训练语言模型的各向异性问题。前面介绍的几篇文章无一例外使用…

现代计算机中数字的表示与浮点数、定点数

现代计算机中数字的表示与浮点数、定点数 导读:浮点数运算是一个非常有技术含量的话题,不太容易掌握。许多程序员都不清楚使用操作符比较float/double类型的话到底出现什么问题。这篇文章讲述了浮点数的来龙去脉,所有的软件开发人员都应该读…

华为OD机试真题 - 最优结果的a数组数量 - 贪心思维(Python/JS/C/C++ 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试真题(Python/JS/C/C)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,…

【扇贝编程】使用Selenium模拟浏览器获取动态内容笔记

文章目录 selenium安装 selenium下载浏览器驱动 获取数据处理数据查找一个元素查找所有符合条件的元素 控制浏览器 selenium selenium是爬虫的好帮手, 可以控制你的浏览器,模仿人浏览网页,从而获取数据,自动操作等。 我们只要让…

【HarmonyOS 4.0】网络请求 - axios

axios 相当于鸿蒙应用项目的一个第三方库,鸿蒙应用项目使用ohpm管理(包括安装,卸载等)第三方库。除了axios,还有很多其他的第三方库可供开发者使用,所有的第三方库都收录在OpenHarmony三方库中心仓。注意&a…

【leetcode详解】考试的最大困扰度(滑动窗口典例)

实战总结: sum answerKey[right] c; 经典操作,将判断语句转化为0, 1接收来计数//大问题分解: 对T还是F做修改, 传参为c//滑动窗口: 遍历, 维护left& right指向 及 c的个数, 更新不知从何下手写代码时:考虑先写好第一次的&a…

Superset二次开发之Select 筛选器源码分析

路径:superset-frontend/src/filters/components/Select 源码文件: 功能点: 作用 交互 功能 index.ts作为模块的入口点,导出其他文件中定义的主要组件和函数。它使其他文件中的导出可以被外部模块使用。 SelectFilterPlugin.tsx 定义主要…

Cursor 使用 One API 配置 Anthropic Claude BaseURL 代理指南

背景 Cursor IDE 原生只支持配置 ChatGPT 的 API Base URL,无法直接使用 Anthropic Claude 的 API。 本指南将介绍如何通过One API来解决这个问题,实现在Cursor中使用Claude API。 前置条件 部署One API https://github.com/songquanpeng/one-api 获取Anthropic Claude A…

vue3的el-tree的default-checked-keys无法勾选的问题解决

前言:有些树形控件是需要默认勾选的 但是请求后渲染不显示 刷新外部的key值也没有用 看了一下文档 我们使用自带的方法来解决 <el-treenode-key"id":data"state.parentMenuList":default-checked-keys"state.checkIdList":check-on-click-n…

Redis-主从集群

主从架构 单节点Redis的并发能力是有上限的&#xff0c;要进一步提高Redis的并发能力&#xff0c;就需要搭建主从集群&#xff0c;实现读写分离。 主从数据同步原理 全量同步 主从第一次建立连接时&#xff0c;会执行全量同步&#xff0c;将master节点的所有数据都拷贝给sla…

【Qt】处理键盘事件

处理键盘事件 要想获取到用户的键盘按键&#xff0c;在之前的学习中使用过QShortCut&#xff0c;这个函数是信号槽机制封装过获取键盘按键的方式&#xff0c;站在更底层的角度&#xff0c;也可以通过事件获取到当前用户键盘按下的情况。 Qt 中的按键事件是通过 QKeyEvent 类来实…

【生日视频制作】劳斯莱斯库里南中控改名软件AE模板修改文字软件生成器教程特效素材【AE模板】

生日视频制作教程豪车劳斯莱斯库里南中控改名软件AE模板修改文字特效广告生成神器素材祝福玩法AE模板工程 怎么如何做的【生日视频制作】劳斯莱斯库里南中控改名软件AE模板修改文字软件生成器教程特效素材【AE模板】 生日视频制作步骤&#xff1a; 下载AE模板 安装AE软件 把A…

文法的例题

答案&#xff1a;B 知识点&#xff1a; 文法 一个形式文法是一个有序四元组G{V,T,S,P}&#xff0c;其中&#xff1a; V&#xff1a;非终结符。不是语言组成部分&#xff0c;不是最终结果&#xff0c;可理解为占位符 T&#xff1a;终结符。是语言的组成部分&#xff0c;是最…

共享单车轨迹数据分析:以厦门市共享单车数据为例(一)

共享单车数据作为交通大数据的一个重要组成部分&#xff0c;在现代城市交通管理和规划中发挥着越来越重要的作用。通过对共享单车的数据进行深入分析&#xff0c;城市管理者和规划者能够获得大量有价值的洞察&#xff0c;这些洞察不仅有助于了解城市居民的日常出行模式&#xf…

地理信息系统设计与开发第一次作业,配置QGIS二次开发环境

我是根据这篇来配置的&#xff1a;QGIS二次开发环境配置&#xff08;VS2019QT5.12.2QGIS3.26.3&#xff09;-CSDN博客 其中&#xff0c; 我错误的理解了这里的意思&#xff0c;这些bin里面的东西和exe要在一个目录下。然后就不会有这样的问题了&#xff0c;

暑期档总结:哪部国漫年番表现更优?

“暑期档”可能是所有档期中绵延时间最长的&#xff0c;作为该时间段主力的学生人群&#xff0c;在学业压力较小的假期中&#xff0c;需要更多娱乐方式来填充生活。除了电影之外&#xff0c;动画番剧越来越成为这一群体的不二选择&#xff0c;各个动画制作公司也会选择把精彩剧…

20:HAL--RNG

一&#xff1a;RNG 伪随机数就是rand函数产生的数。 F1系列的没有RNG,使用本次说的都是F407的&#xff0c;我使用的是STM32F407VET6 B&#xff1a;框架 C&#xff1a;寄存器 /*RNG_SR寄存器的DRDY位*/ while ((__HAL_RNG_GET_FLAG(&rng_handle, RNG_FLAG_DRDY) RESET) …