ESRGAN——老旧照片、视频帧的修复和增强,提高图像的分辨率

news/2024/10/11 20:32:39/文章来源:https://blog.csdn.net/m0_75253143/article/details/142168739

ESRGAN(Enhanced Super-Resolution GAN):用于提高图像的分辨率,将低质量图像升级为高分辨率版本,常用于老旧照片、视频帧的修复和增强。

一、ESRGAN 介绍

1.1 背景

超分辨率问题是计算机视觉中的一个重要研究领域,其目标是通过增加像素数量来提高图像的分辨率,恢复出更加细腻的图像。传统的算法(如双三次插值)通常导致放大后的图像模糊、不自然。而深度学习特别是**生成对抗网络(GAN)**的发展,使得基于神经网络的方法在超分辨率任务中取得了突破。

ESRGAN 是在原先的 SRGAN(Super-Resolution GAN)的基础上进行改进和优化的。它结合了生成对抗网络和深度残差网络,在放大图像时能够生成更真实的细节。

1.2 ESRGAN 的改进点

ESRGAN相比于SRGAN的主要改进包括:

  • RRDB(Residual-in-Residual Dense Block):引入残差块中的残差块,使得网络深度更深,结构更加稳定,提高了图像的重建质量。
  • Relativistic GAN:在损失函数中引入相对判别器损失,这种方式使得生成器不只是学会欺骗判别器,而是使生成的图像相对真实图像看起来更真实。
  • 更好的感知损失:通过感知损失引导生成器,使生成的高分辨率图像在人类视觉感知上更加自然,细节更丰富。
1.3 ESRGAN 的特点
  • 高质量的图像放大:ESRGAN能够从低分辨率图像中恢复出高质量的纹理细节,效果显著优于传统方法和早期的深度学习方法。
  • 生成对抗网络(GAN)的应用:生成对抗网络能够使生成的图像看起来更加自然,而不是简单的插值或像素重建。
  • 适用于多种应用场景:ESRGAN不仅可以用于图像的放大,还能用于其他需要超分辨率的领域,如医学影像处理、卫星图像分析、视频增强等。

二、ESRGAN 的技术实现

ESRGAN 的技术实现主要基于生成对抗网络(GAN)深度卷积神经网络(CNN),并通过多种优化策略提高了性能。

2.1 ESRGAN 的网络结构

ESRGAN的核心网络结构由两个主要部分组成:生成器和判别器。

  1. 生成器(Generator):生成器负责将低分辨率图像转换为高分辨率图像。ESRGAN 的生成器基于深度残差网络,具体使用了 RRDB 结构来增强生成能力。

    • RRDB(Residual-in-Residual Dense Block):RRDB 是 ESRGAN 中的核心模块,利用密集连接(Dense Connection)和残差连接(Residual Connection)来提高网络的深度,同时避免梯度消失问题。RRDB 允许网络学习更复杂的特征表示,从而生成更逼真的高分辨率图像。
  2. 判别器(Discriminator):判别器的作用是判断图像是否是“真实的”高分辨率图像。ESRGAN使用了相对判别器损失(Relativistic Average Discriminator),使得判别器能够学会在生成的图像和真实图像之间进行相对比较,而不是单纯判断图像的真假。

  3. 感知损失(Perceptual Loss):ESRGAN 引入了感知损失,即通过高层次的图像特征(通常通过VGG网络提取)来指导生成器的优化,使生成的图像在高层次特征上与原图更接近。这种损失机制能够让生成的图像在人眼看来更加自然。

2.2 训练过程

ESRGAN 的训练过程与其他生成对抗网络类似,包含以下几个关键步骤:

  1. 数据准备:训练过程中需要大量的低分辨率和高分辨率图像对,用于训练生成器和判别器。
  2. 生成器训练:生成器接收低分辨率图像,生成高分辨率图像,并通过损失函数(包括像素损失、感知损失和对抗损失)不断优化。
  3. 判别器训练:判别器通过与生成器对抗,学习判断输入的图像是真实的还是生成的,逐渐提高生成器的生成效果。
  4. 联合训练:生成器和判别器交替训练,直到生成的高分辨率图像足够逼真。

三、ESRGAN 的使用

ESRGAN 模型可以在多种环境下使用,如本地机器、云端服务、甚至移动设备上。以下是使用 ESRGAN 的主要步骤。

3.1 依赖环境的安装

要使用 ESRGAN,需要配置 Python 环境并安装相关的深度学习库:

# 创建虚拟环境并激活
python -m venv esrgan_env
source esrgan_env/bin/activate# 安装必要的库
pip install torch torchvision

ESRGAN 的代码通常使用PyTorch框架实现,因此你需要安装 PyTorch,并确保你的机器有合适的 GPU 支持(CUDA)。

3.2 下载 ESRGAN 模型

你可以从以下资源获取预训练好的 ESRGAN 模型权重:

  • GitHub 代码仓库:GitHub - xinntao/ESRGAN: ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.
  • 预训练模型通常存放在 models 文件夹中。下载权重后,可以使用这些权重加载 ESRGAN 模型并直接进行推理。
3.3 运行 ESRGAN 模型进行推理

以下是如何使用 ESRGAN 进行图像超分辨率推理的基本步骤:

import torch
from PIL import Image
import torchvision.transforms as transforms
from models import RRDBNet# 加载 ESRGAN 模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = RRDBNet(3, 3, 64, 23, gc=32).to(device)# 加载预训练模型权重
model.load_state_dict(torch.load('models/RRDB_ESRGAN_x4.pth'))# 加载图像并进行预处理
def load_image(image_path):img = Image.open(image_path).convert('RGB')transform = transforms.ToTensor()img_tensor = transform(img).unsqueeze(0)return img_tensor# 对图像进行超分辨率处理
def upscale_image(model, img_tensor):model.eval()with torch.no_grad():output = model(img_tensor.to(device))return output# 加载图像并进行推理
input_image_path = 'input_image.jpg'
img_tensor = load_image(input_image_path)
upscaled_img = upscale_image(model, img_tensor)# 保存放大后的图像
output_image = transforms.ToPILImage()(upscaled_img.squeeze(0).cpu())
output_image.save('output_image.png')
3.4 参数调整与自定义模型

ESRGAN 的参数可根据具体需求进行调整。你可以通过以下方式来调整模型的参数和结构:

  • 放大倍数:ESRGAN 的默认模型是 4 倍放大,你可以通过调整生成器结构来实现不同倍数的超分辨率。
  • 损失函数的调整:可以调整感知损失的权重或尝试不同的损失函数,以获得更适合特定场景的结果。

四、ESRGAN 的应用

ESRGAN 在许多实际应用场景中都具有非常重要的作用:

4.1 图像放大与恢复
  • 老照片修复:通过 ESRGAN,模糊或分辨率较低的老照片可以被高质量地放大和修复,恢复出更多的细节和真实感。
4.2 视频增强
  • 视频超分辨率:ESRGAN 不仅能处理静态图像,还能用于视频处理,通过逐帧放大,提升视频的清晰度。
4.3 游戏图像增强
  • 游戏纹理增强:在复古游戏中,很多场景或角色的纹理分辨率较低,使用 ESRGAN 可以提高这些图像的分辨率,让游戏画面看起来更加清晰。

五、总结

ESRGAN 是图像超分辨率领域的一项重大突破,通过结合深度学习和生成对抗网络技术,它能够从低分辨率图像中恢复出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ldbm.cn/p/441356.html

如若内容造成侵权/违法违规/事实不符,请联系编程新知网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++核心编程和桌面应用开发 第一天

目录 1.C的编程方式 2.双冒号::运算符 3.命名空间 3.1作用 3.2命名空间内的东西 3.3注意事项 4.using的用法 4.1using的声明 4.2using编译指令 5.C相较于C的增强 5.1全局变量检测增强 5.2函数检测增强 5.3类型转换检测增强 5.4结构体增强 5.5三目运算符增强 5.…

卷积神经网络-经典分类网络结构(LetNet-5,AlexNet)

目录 一:LeNet-5解析 1.网络结构 输入层: 1.conv1: 2.pool1层: 3.conv2: 4.pool2: 5.fc3,fc4: 6.output层: 2.参数形状 二:AlexNet 1层: 2层&am…

Element UI:初步探索 Vue.js 的高效 UI 框架

Element UI:初步探索 Vue.js 的高效 UI 框架 一 . ElementUI 基本使用1.1 Element 介绍1.2 Element 快速入门1.3 基础布局1.4 容器布局1.5 表单组件1.6 表格组件1.6.1 基础表格1.6.2 带斑马纹表格1.6.3 带边框表格1.6.4 带状态的表格 1.7 导航栏组件讲解 二 . 学生列…

可提示 3D 分割研究里程碑!SAM2Point:SAM2加持泛化任意3D场景、任意提示!

郑重声明:本解读已获得论文作者的原创解读授权 文章链接:https://arxiv.org/pdf/2408.16768 在线demo: https://huggingface.co/spaces/ZiyuG/SAM2Point code链接:https://github.com/ZiyuGuo99/SAM2Point 亮点直击 无投影 3D 分割&#xff1…

汽车无钥匙启动功能工作原理

移‌动管家无钥匙启动‌是一种科技化的汽车启动方式,它允许车主在不使用传统钥匙的情况下启动车辆。这种技术通过智能感应系统实现,车主只需携带智能钥匙,当靠近车辆时,车辆能够自动解锁并准备启动。启动车辆时,车主无…

828华为云征文 | 基于Docker与Jenkins实现自动化部署

前言 重塑自动化部署新高度,Docker携手Jenkins,在华为云Flexus X云服务器的加持下,引领持续集成与部署的新纪元。Flexus X以其卓越的性能、灵活的资源配置和高效的成本优化,为Docker容器化应用与Jenkins自动化流水线提供了理想的运…

在广袤的数据通信旷野,“伙伴+华为”体系点亮星云

在浩浩荡荡的智能化变革中,从用户层面看,来自地市区县的各个行业与企业是真正的主体,以他们为主体的商业市场,提供了智能化进程中最为关键的广度。 而从技术角度看,数据通信是千行万业都需要的基本数字化能力。数据通信…

QGIS 如何连接空间库,并实时编辑空间表?编辑后库表如何刷新,保证是最新数据?

文章目录 一、什么是 qgis?二、qgis 如何连接数据库三、实时编辑空间表四、编辑后库表如何刷新,保证是最新数据?五、总结 一、什么是 qgis? QGIS(原称Quantum GIS)是一个用户界面友好的开源桌面端软件&…

ES-Search API

一、Search API的分类 URI Search 在url中传入查询参数进行查询,Request Body Search 使用es提供的,基于json的更加完备的Query Domain Specific Language(DSL) 语法范围/_search集群上所有的索引/index1/_search查询索引名为index1的索引/index1,inde…

N-152基于java贪吃蛇游戏5

开发工具eclipse,jdk1.8 文档截图: N-152基于java贪吃蛇游戏5

JavaScript ES6特性(var let const、function=>、增强表达赋值、类与对象)

一、var let const 1、var var明明定义在for里面的但是外部能够访问这个变量,说明var可以跨域访问。 2、let let明明定义在for里面的但是外部不能够访问这个变量,说明let不可以跨域访问。 3、const const foo = {}; // 为 foo 添加一个属性,可以成功 foo.prop = 123; fo…

影刀RPA实战:自动化批量生成条形码完整指南

今天我们聊聊使用影刀来实现批量生成条形码,条形码在零售行业运用非常广泛,主要作用表现在产品识别,库存管理,销售管理,防伪保护等,这些作用使其成为现代商业和工业环境中不可或缺的工具,它极大…

大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例

Flink SQL Flink SQL 是 Apache Flink 提供的一种高层次的查询语言接口,它基于 SQL 标准,为开发者提供了处理流式数据和批处理数据的能力。Flink SQL 允许用户使用标准 SQL 查询语言在数据流和数据表上执行复杂的操作,适用于多种应用场景&am…

MongoDB创建用户教程

1、连接到 MongoDB 首先&#xff0c;打开你的终端并使用 mongosh 命令连接到 MongoDB 服务器&#xff1a; mongosh --host <hostname> --port <port> 说明&#xff1a; mongosh&#xff1a;启动 MongoDB Shell 命令行工具。 --host <hostname>&#xff1a…

企业三要素核验确保企业真实合法性和信用可靠性

企业三要素核验是确保企业真实合法性和信用可靠性的重要步骤&#xff0c;主要涉及对企业名称、统一社会信用代码&#xff08;或注册号&#xff09;以及法定代表人姓名这三个关键要素的验证。以下是对企业三要素核验的详细阐述&#xff1a; 一、企业三要素核验的意义 确保企业真…

拥抱HTML5

第1章 拥抱HTML5 HTML5草案诞生于2004&#xff0c;在2007年时被W3C采纳。Mozlilla、Microsoft、Google等公司的浏览器不同程度的支持了HTML5新功能。H5将引领Web发展的方向。 1.1 安装浏览器 常用谷歌浏览器和edge浏览器。 新建看是否支持HTML5. 浏览器加载Web页面时会构造…

stm32单片机个人学习笔记1(简单介绍)

前言 本篇文章属于stm32单片机&#xff08;以下简称单片机&#xff09;的学习笔记&#xff0c;来源于B站教学视频。下面是这位up主的视频链接。本文为个人学习笔记&#xff0c;只能做参考&#xff0c;细节方面建议观看视频&#xff0c;肯定受益匪浅。 STM32入门教程-2023版 细…

医院管理系统+Springboot论文源码调试讲解

2相关技术 2.1微信小程序 小程序是一种新的开放能力&#xff0c;开发者可以快速地开发一个小程序。小程序可以在微信内被便捷地获取和传播&#xff0c;同时具有出色的使用体验。尤其拥抱微信生态圈&#xff0c;让微信小程序更加的如虎添翼&#xff0c;发展迅猛。 2.2 MYSQL数据…

详细分析Uniapp中的轮播图基本知识(附Demo)

目录 前言1. 基本知识2. Demo2.1 基本2.2 自定义分页2.3 自定义动画 3. 扩展 前言 先看代码示例&#xff1a; 实现了一个带有分页指示器的轮播图组件 <template><view class"work-container"><!-- 轮播图 --><uni-swiper-dot class"uni…

EmguCV学习笔记 VB.Net 11.5 目标检测

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…